
Introduction to IGOR Pro Program-
ming
IGOR Pro is a bona fide programming platform. It is software that can interpret long sequences of
commands, compile them (translate them into lower level binary sequences that the computer can
understand) and execute the programs. It has a simple development environment, complete with a
user interface and a debugger. The system is designed primarily to allow you to build programs
from IGOR's large repository of built-in functions. Hence, IGOR programming proceeds with
greater speed than traditional programming because one need not write analytical or statistical al-
gorithms from scratch. Many such functions are already built into IGOR.

IGOR programming focuses on automating tasks, but it is not limited to automation. It is also pos-
sible to write programs that do complex calculations, acquire data from instruments, and create
elaborate user interfaces. The objective of this primer is to help you get started on the path to be-
coming an IGOR programmer.

This manual will also serve as a very brief survey of IGOR’s built-in functions. It starts slowly, but
the pace will quicken quite rapidly.

Before You Begin
Prerequisites
This tutorial requires IGOR Pro version 5.04 or later. If you do not have version 5.04 or later,
please update to the latest IGOR Pro. In IGOR Pro 5 you can do this by choosing Updates from the
IGOR Help menu.

There are some requirements to using this manual. Prior to proceeding with programming IGOR, it
is essential to take the Guided Tour of IGOR Pro (in Volume I of the IGOR Pro manual set). You
should be comfortable with IGOR waves, with IGOR experiments, with creating graphs and tables
manually, and with running IGOR procedures written by others. If not, re-take the Guided Tour or
refer to IGOR’s manual and get acquainted with IGOR before you begin programming.

We also assume that you have some experience programming at any level in any language so that
basic programming concepts like functions, parameters and loops are not entirely foreign to you.

Programming Essentials
IGOR programming is much easier than conventional programming because IGOR Pro already has
innumerable built-in functions that perform most tasks. For example, you need not write your own
curve fitting algorithm. The CurveFit command readily does that. Hence, IGOR programming
focuses more on automating tasks, rather than implementing analyses from scratch. Of course, you
are free to do that in IGOR if you so desire.

In addition, IGOR programming is easier because it is highly interactive. You can enter a function
in IGOR’s procedure window and compile and execute it right away from the command line.

Companion Experiment
Much of the material presented here works on data in the IntroToIGORProgramming.pxp experi-
ment file. Open it now in IGOR so that you can follow along. The waves that you need for the ex-
amples are provided in the root data folder of this experiment. (From the menu choose Data and
then Data Browser.)

1 of 33, September 19, 2007 11:46 PM

The Structure of the Tutorial
This tutorial begins with some quick
drills to get you acquainted with the
the process of entering code into the
Procedure window, compiling the code
and executing the code. The most basic
elements are introduced first, and the
subsequent examples build on the sim-
pler ones. New elements are intro-
duced in bold text. The explanations
are offered mainly in the text that fol-
lows each example, and partly in the
comments that accompany each func-
tion. As you enter code, examine it line
by line and read the comments.

Although you can cut and paste the
functions into the Procedure window,
we recommend that you manually type
the functions into the Procedure win-
dow or use the built-in templates (Fig-
ure 1). This will help you get used to
the mechanics of IGOR programming.

Fundamentals
The Procedure Window
In IGOR Pro, program code is entered into procedure files. Procedure files can be standalone files
or they can be part of an experiment package. Each experiment includes one special, built-in pro-
cedure file which you view through the Procedure Window. You can use the Windows menu to
open the procedure window or, better yet, use a keyboard shortcut – cmd-M (Macintosh) or Ctrl-M
(Windows).

Open the procedure window now using the keyboard shortcut. Now close it using cmd-W or Ctrl-
W.

Programs entered into the built-in procedure window become part of that particular experiment.
As such they are accessible from that experiment only. The built-in procedure window is a good
place to experiment with programming, and that is how we will use it.

Once your program is working, you can save it as a separate, standalone procedure file that can be
accessed from any experiment. You should save general procedures that you want to use over and
over as standalone procedure files. For now, we stay with the built-in Procedure window.

Two features are important when you are a beginning programmer. First, text entered into the Pro-
cedure window is color coded as it is typed. The colors make it easy to avoid conflicts between
user-selected object names and IGOR commands and statements. If the color does not look right,
you need to change the text. Second, you can insert a generic template for any IGOR command or
statement from the "template" menu on the lower left of the Procedure window. Figure 1 shows
how a do-while loop template is inserted. These templates are useful in the early stages when one

2 of 33, September 19, 2007 11:46 PM

Figure 1 Using the templates menu to insert a program-
ming element into the procedure window. In this case, it
is a do-while loop.

is inclined to forget a comma, a parenthesis, or a bracket. As you can see, these templates also
come with some standard comments (the text appearing in red).

The Function
The basic IGOR programming unit is the function, and, in its simplest form it has the following
structure:

Function Function_Name()
 IGOR commands
End

The first line is the declaration of the function itself, and the assignment of its name (letters, num-
bers and underscore character only), which is Function_Name in this case. It will become clear
soon why the parentheses are required. After the function declaration come the commands that
will be carried out when the function is called. These commands constitute the body of the func-
tion. The last line is the End statement which marks the end of the function.

The function is executed whenever it is called. You can call it from the command line or from an-
other function. IGOR also has many built-in functions. The ones we write are user-defined func-
tions (IV Ch. 3; this is how future references to the IGOR manual set will appear).

Writing a Function
Let's start with the obligatory "Hello World" example.

Open the Procedure Window (Command-M on Mac, Ctrl-M on Windows, or from the Procedure
Window menu item under the Windows menu) and type the following:

Function HelloWorld()
 Print "Hello World!"
End

When you start typing, the "Compile" button becomes active. You can press it to start compiling
your function. You can also switch to another window, an act that will trigger a compile. If you
have any typographical or syntactical errors, IGOR will report them to you at this stage.

If the function compiles without any errors, you are ready to execute it (or call it). If the compiler
discovers any errors, you can choose Edit Procedure or Quit Compile from the error dialog. Edit
Procedure will take you to the position where the error was encountered in the Procedure window.
Quit Compile will halt compiling and return you to IGOR Pro to perform other tasks.

Errors noted by the compiler are compile time errors. They are usually typographical or syntactical
errors. Errors that are encountered when functions are executed are run time errors. Run time er-
rors can be difficult to discover and correct and may require debugging. For example, telling IGOR
to kill a wave that does not exist is a runtime error. More on this topic later.

Calling a Function
Once written, a function must be called. When a function is called, it is executed in its entirety.
The function is most commonly called from the command line, from a menu, from another func-
tion or from an assignment statement.

Call the function you wrote above from the Command window by typing

HelloWorld()

3 of 33, September 19, 2007 11:46 PM

into the command line area of the command window and pressing the Enter or Return key on your
keyboard. You will see Hello world! printed in the history area of the Command window.

Let's call this function from an IGOR menu (IV Ch. 5). Type the following menu definition into the
Procedure window.

Menu "Macros"
 "Hello World", HelloWorld()
End

After compiling, you see "Hello World" listed as an item under the Macros menu. Choosing it
yields the same result as when you called HelloWorld from the command line.

So, now you know what the Print command does. It is a useful command in debugging run time
errors.

The Return Value of A Function
Historically and generally, functions strictly calculated certain values and returned the values to
the source from which they were called. This value can be a string (i.e., text), a real number, or a
complex number. The function is no longer required to return a value to its caller, but if we require
a value from a function, the return statement does this job.

Enter the following into the Procedure window.

Function ValueDemo()
 return pi*3^2
End

Now, execute the following command in the Command window.

Print “The area of a circle with a radius of 3 units is “, ValueDemo(),”
units squared.”

As you can see, the return statement defines the value that the function returns, the area of the
circle in this instance.

By default, IGOR expects functions to return a real number. Let’s demonstrate the importance of
value types by making ValueDemo a string function with the /S flag and compile it again.

Function/S ValueDemo()
 return pi*3^2
End

Compiling this function fails because IGOR reports a type mismatch. IGOR expects ValueDemo to
return a string value, but the return statement returns a number. Invoking one IGOR built-in func-
tion solves the problem:

Function/S ValueDemo()
 return num2str(pi*3^2)
End

The num2str function converts the numerical value inside the parentheses that follow it into a
string. There is a no longer a type conflict, and the function compiles and executes normally. Types

4 of 33, September 19, 2007 11:46 PM

must be defined and observed for parameters as well because computer stores and processes
numbers, text and complex numbers differently. And, yes, the reverse function, str2num, exists.

Of course, this is a fairly worthless function, for it is capable of evaluating the area of a circle with
a fixed radius. We need to use parameters to make functions more general.

Parameters
When a function needs to operate on a particular object(wave, string or text variable, etc.), it must
receive the information about the object as a parameter during the function call. The function must
also contain instructions on how to treat each parameter. In other words, values, strings and waves
are passed to functions as parameters.

The three parameters types are numeric (number, real and complex), string (i.e., text), and wave.
Numeric parameters are declared with the Variable declaration. String parameters are declared
with the String declaration. Waves are declared with the Wave declaration. Complex parameters
are declared with the /C flag; i.e., Variable/C. Let's start a few drills with parameters by changing
ValueDemo function to read:

Function ValueDemo(radius)
 Variable radius

 return pi*radius^2
End

Now you must supply a numeric parameter when calling ValueDemo.

Execute this line in the Command window:

Print "The area of a circle with radius = 2.75 in. is",ValueDemo(2.75)," sq.
in."

Now let’s try a function with both a numeric and string parameter.

Enter this in the procedure window:

Function CircleArea(radius,units)
 Variable radius
 String units
 Print "If radius=",radius,units,", then area is ",pi*radius^2," square",
units
End

Now call the function from the command line with CircleArea(8.5,"meters") and examine
the output in the history area. Values for the variables need to be entered in the order in which
they appear in the function declaration. String values are marked by double quotes.

Save the experiment file. Remember to save your files periodically. At present, IGOR offers no
backup solution. So, your only backup is to save your experiment and/or procedure files regularly.

Wave Parameters and Forming Wave Names
Wave parameters deserve special attention because mishandling waves is mishandling data, and
you don't want to lose any data. Although waves can be accessed directly by a function, certain
situations require that they be declared like string and numerical values before they can be used in
a function. For example,

5 of 33, September 19, 2007 11:46 PM

Function test1()
 Duplicate/O fluorescence fluortemp
End

test1 will execute successfully, and create a duplicate of the wave fluorescence. Modifying it
this way will lead to failure:

Function test1()
 Duplicate/O fluorescence fluortemp
 fluortemp=fluorescence/3
End

The failure happens because the assignment statement (in bold) cannot act on an object that has
not been declared, namely fluorescence. We must make a wave declaration to make the assign-
ment successful. This modification will make the function work.

Function test1()
 Duplicate/O fluorescence, fluortemp

 Wave fluorescence

 fluortemp = fluorescence/3
End

Why do we not need to declare fluortemp also? Because fluortemp was created by test1 in the
duplicate statement. As a result, test1 can be said to have sufficient awareness (an implicit one)
of fluortemp. test1 lacks sufficient awareness of fluorescence for the assignment statement to
work. Therefore, we provide test1 (explicitly) with the requisite awareness with the Wave declara-
tion.

To make the function more general, we can rewrite it so that the data that we want to process is
passed on to test1 as a wave parameter.

Function test1(wave2treat)//Function to get stats and print maximum

 Wave wave2treat // Declares parameter
 //and makes the name wave2treat a local alias for original wave

 Duplicate/O wave2treat fluortemp
 fluortemp=wave2treat/3
End

Now, we must call test1 with the name of our wave: test1(fluorescence). The name of the
wave is then stored in the wave parameter wave2treat. The wave declaration then makes the
name wave2treat a local or temporary alias for fluorescence.

As you might have guessed, because actions applied to wave2treat are applied directly to fluo-
rescence, you must exercise caution when invoking commands that alter the wave. For example,
killwaves wave2treat will kill fluorescence. While you are testing a function, you may want to
use the duplicate operation to create a copy of the wave, and carry out your transformations on
the copy until your function is working properly. We all learn this lesson eventually after acciden-
tally killing some original data.

Now, it would be nice to have a more descriptive name than fluortemp for the new wave. We can
do this with the aid of a local string variable and one built-in IGOR function.

6 of 33, September 19, 2007 11:46 PM

Function test1(wave2treat)//Function to get stats and print maximum
 wave wave2treat //Wave reference receives wave at function call

//Store the name of the wave plus the string "_OneThird" into newWaveName
 string newWaveName=NameOfWave(wave2treat)+"_OneThird"

//Duplicate fluorescence as a wave named fluorescence_OneThird
 duplicate/O wave2treat $newWaveName

//Reference fluorescence_OneThird so that you can use it
 Wave newWave=$NewWaveName

//Use fluorescence_OneThird
 newWave=wave2treat/3
End

Execute the function as you did previously, and note the name of the new wave that was created.
Here’s what the commands do.

The string declaration creates a string consisting of the name of the wave to which the wave pa-
rameter wave2treat points (namely, fluorescence) and appends the text _OneThird to make the
string value fluorescence_OneThird. The Duplicate command then creates a copy of
wave2treat (i.e., fluorescence) with the name fluorescence_OneThird. Note that the Dupli-
cate command must act on the content of the string variable. Therefore, we use the $ to tell Du-
plicate that it should use the content of newWaveName to produce a wave named fluores-
cence_OneThird. If we omitted the $, Duplicate would create a wave literally named newWave-
Name.

The same principle is in action in the next wave declaration, which is required for the final as-
signment. Remember this distinction between a string parameter, NewWavename, and a literal
string. Using the wrong object in a command will cause an error.

The bottom line is that a wave (also other variables and parameters) must be declared before it can
be used in an assignment statement and certain operations. Absent an implicit declaration via op-
erations like Make and Duplicate, you must make an explicit reference with the Wave declaration.

Of course, in the course of performing its duties, a function may require additional local variables.
These can be declared in the normal fashion after declarations for parameters.

Formatting Output and Combining Commands
Now, let’s make more readable output with the aid of the Printf operation. Execute the following
in the Command window:

Printf "When r = 2.75, area is %+10.2f sq.in.\r", ValueDemo(2.75)

The Printf command can format the output. It requires an escape character, “%” in this instance.
The escape character tells IGOR to start processing the following conversion specification. The
conversion specification here is “+10.2f” and will format the the appearance of the values that
follow the closing quotations. “+” tells IGOR to place the plus sign before the value, “10” tells
IGOR to take 10 spaces to print the value, “.2” tells IGOR to report the value to the second deci-
mal place, and “f” tells IGOR to use a floating point format.

After the closing quotations, IGOR expects a list of literal numbers, variables or function calls
separated by commas.

7 of 33, September 19, 2007 11:46 PM

Unlike print, printf does not go to the next line by default. Therefore, the carriage return com-
mand must be made explicit using the \r escape sequence.

Recap
So, functions have the following general structure:

Function Function_Name(numeric_parameter,string_parameter,wave_parameter)
 Variable parameter
 String parameter
 Wave parameter

 Variable local_variable
 String local_string

 Wave wave_name
 IGOR Commands and/or flow control statements

 return return_value
End

The parameter declarations must have the same name as the parameters named in the function
declaration line. Variables declared later can have any name. Unless they are declared with the /G
flag, all these variables are local in scope. This means that they you can refer to them in the body
of the function within which they are declared, only, and they cease to exist when the function
returns. Global variables (declared with variable/G) are global in scope and can be used by any
function.

Modularity
As you might have deduced already, since a function can be called from another function, it is
possible to encode the tasks that need to be performed into different functions so that each calcu-
lation or transformation can be performed when it is needed. To demonstrate this, let’s write a se-
ries of functions that calculate all the values associated with a circle.

Function CirclePerimeter(radius)
 Variable radius
 return 2*pi*radius
End

Function CircleArea(radius)
 Variable radius
 return pi*radius^2
End

Function SphereVolume(radius)
 Variable radius
 return 4/3*pi*radius^3
End

Function PrintProperties(radius)
 variable radius

 Variable perimeter = CirclePerimeter(radius)
 Variable area = CircleArea(radius)
 Variable volume = SphereVolume(radius)

8 of 33, September 19, 2007 11:46 PM

 Printf "For a radius
of %.2f inches: ", ra-
dius

 String format =
"Perimeter=%+.2f in.,
area=%+.2f sq. in.,
volume=%+.2f cu. in.\r"
 Printf format, perime-
ter, area, volume
End

Note that the function Cir-
cleArea has been modified
from the earlier version above.

Call the function with
PrintProperties(6.37) ,
or any other number you want
to choose as the radius. You
can adjust the formatting pa-
rameters in the printf com-
mands to get the desired num-
ber of decimal points.

Because each task is carried out by a separate function, each property of the circle can be ac-
cessed whenever it is needed. This example is trivial, of course, but, as you already surmise, we
will employ modularity to separate complicated tasks.

PrintProperties can be said to be driving the other functions. As the more advanced examples
will show, employing this strategy makes writing complicated programs much more manageable.

If you have many of functions in the procedure window, navigating to the function that you want
to correct can become a hassle. Fortunately, you can quickly jump to the desired function by
choosing it from the “Procedures” drag-down menu in the Procedures window (Figure 2). In that
vein, choosing a descriptive name for the functions is helpful.

Simple Functions
The purpose of the previous sections was to acquaint you with IGOR Pro’s programming environ-
ment and to make you comfortable with the process of writing functions, compiling them and exe-
cuting them. Now, let’s continue this process by writing short, useful functions.

Open IntroToIGORProgramming.pxp, and do all work within that file. Be sure to keep any and all
waves upon which the following functions operate in the root folder. Do not create any data fold-
ers (in the Data Browser).

A Simple Tag
If you share the writer’s obsession for marking peaks in your two-dimensional graphs with a tag,
then you will love this function. Go ahead and execute (in the Command window)

Display fluorescence vs fluorwavelength

9 of 33, September 19, 2007 11:46 PM

Figure 2 Using the Procedures menu to navigate to the function
that needs attention.

Bring up the cursors with the showinfo command, and choose a point near the peak by dragging
the round cursor to the peak. Point number 99 is close enough. Now, enter this function in the
procedure window.

Function TagPoint(traceName,tagpoint) //tag trace at specified point
 String traceName //receives name of trace to tag
 Variable tagpoint//receives point to tag

 Tag/F=0/L=1 $traceName,tagpoint,"\\OX"//tags graph with x-value
End

It is worthwhile to review the use of $ here. The Tag operation is looking for the name of a trace in
the graph. We have the name of the trace – it is in the parameter traceName. If we used “trace-
Name” without the $, the Tag operation would look for a trace whose name is literally “trace-
Name”. Finding no such trace, it would return an error. We need a way to tell the Tag operation
that the parameter we are supplying is not literally the name of the trace but rather is a string vari-
able containing the name of the trace. That is what $ does. It tells the operation to obtain the name
by extracting the contents of the string variable that follows.

Mark point 99 by executing:

TagPoint("fluorescence",99)

Change the values of /F and /L to see what happens. Let's make this function easier to use before
we discuss it. Let's re-write it so that it gets all of the necessary information from cursor A.

Function TagCursorA()//tag trace at specified point
 String traceName = CsrWave(A)
 Variable xValue = xcsr(A)

 Tag/F=0/L=1 $traceName, xValue, "\Z12\\OX"
End

This function does not require any values to be passed on to it when it is called. Therefore, it can
be added to the menu of your choice.

Choose another point on fluorescence with cursor A (the circular one), and execute

TagCursorA()

Let’s parse this function. First, let’s start with IGOR’s documentation of the Tag command. Read the
IGOR documentation for Tag. The fastest way is to right-click (or Ctrl-click if you have a one-
button mouse) the word Tag and to choose "Help for Tag" from the context menu. The next fastest
way is to search for Tag alphabetically in the Command Help tab of the IGOR Help Browser (un-
der the Help menu). The slowest but clearest way would be to look up Tag in Volume V of the
manual set. Use your favorite method to bring up the synopsis for Tag.

We are using the /F and the /L flags, which address the frame and the line type, respectively. The
last three values are the name of the trace, the x value of the point at which the tag is to be at-
tached, and the text that will be attached to this point. Normally, you would specify the name of
the trace that you want to tag. To make this function a bit more general, we use the Csrwave func-
tion, which returns the name of the wave on which the A cursor rests.

10 of 33, September 19, 2007 11:46 PM

The expression xcsr(A) returns the point of attachment for cursor A, and the string expression
inside the quotes uses the \0X escape sequence to place the x-value into the tag.

This particular Tag command could very well be executed from the command line. Calling it from
a function makes it merely convenient. In this instance, we use one of IGOR’s built-in functions to
get the name of the wave that we want to label. In the next example, we will look at the most ba-
sic way in which the wave name and other parameters are supplied by you.

Again, aearch the IGOR documentation for Tag, xcsrwave, xcsr, and tagval in the online
help, and make sure that you are clear on how the structure of the command yields this particular
result. This understanding is crucial.

Simple Normalization
Normalizing traces to the peak maximum is a common task. Let’s write a simple function that does
this. We will start commenting the code, and we will gradually expand it to make it a more general
algorithm. Read the comments because they do provide some explanation. New elements appear
in bold.

Function CreateNormalizedCopy(input)
 Wave input

 // Get the stats on input wave
 WaveStats/Q input
 Variable maxValue = V_max

 // Generate name of output wave
 String outputName = NameOfWave(input) + "_norm"

 // Create output wave
 Duplicate/O input, $outputName

 // Create a wave reference for output wave
 Wave output = $outputName

 // Do the normalization
 output = output / maxValue
End

Now execute

CreateNormalizedCopy(fluorescence)

A new wave called fluorescence_norm is created.

Graph the new wave by executing:

Display fluorescence_norm vs FluorWavelength

The new graph shows that the trace peak is now 1.0.

Let's discuss this function line by line, in sequence. You will find it useful to bring up the docu-
mentation for each function via the help resources whenever it is discussed.

11 of 33, September 19, 2007 11:46 PM

The wave to be processed, fluorescence, is passed to the function as a (wave) parameter. The first
command, wavestats, generates the statistics for input (i.e., the local alias for fluorescence).
(The /Q flag, designates "quiet mode", and prevents the printing of results to the history area of the
Command window with nearly all IGOR operations.) The string variable outputName is used to
construct the name of the normalized wave, which is the output of the function. We then duplicate
input (i.e., fluorescence) as a wave with this new name. We create a wave reference named
output so that we can use the output wave in the assignment statement that follows. In the final
line, we use the wave output (i.e., fluorescence_norm) to generate the normalized spectrum.

Assignments of this sort are entirely legal and normal. output = output + 1 would increase
every value of output by exactly 1. The c++ grammar allows for the following shorthand for as-
signments of this sort: output += 1.

A (Slightly) More General Normalization Function
It is possible that you do not want the maximum intensity of the normalized spectrum to be unity.
You want it to be any arbitrary unit that you choose. Doing so is trivial. Simply introduce a new
variable that will receive this arbitrary maximum from you and modify the normalization com-
mand. (Changes are in bold.)

Function CreateNormalizedCopy(input,peakvalue)
 //Receives name of the wave
 Wave input
 //Receives the normalized peak value
 Variable peakvalue

 // Get the stats on input wave
 WaveStats/Q input
 Variable maxValue = V_max

 // Generate name of output wave
 String outputName = NameOfWave(input) + "_norm"

 // Create output wave
 Duplicate/O input, $outputName

 // Create a wave reference for output wave
 Wave output = $outputName

 // Do the normalization
 output = output / maxValue * peakvalue
End

Now, call CreateNormalizedCopy with the following, and note the peak value of Fluores-
cence_norm.

CreateNormalizedCopy(fluorescence,4)

A General and Useful Normalization Function
Perhaps you have a noisy spectrum, or you have a spectrum with multiple peaks (like masspec),
and you want to normalize the spectrum to a particular peak which may not be the most intense.
Let's generalize the above function just slightly more and introduce the first flow control element,
the if-endif statement. Again, the changes are in bold.

Function CreatNormalizedCopy(input,peakvalue,leftmark,rightmark,rangetype)

12 of 33, September 19, 2007 11:46 PM

 Wave input
 Variable leftmark,rightmark,peakvalue,rangetype
 Variable maxValue

 //_norm will be added to name of original wave to make name
 //of normalized wave

 String outputName=NameofWave(input)+"_norm"

 //Make sure that the input for rangetype is valid.
 //Otherwise, exit function.
 if (rangeType<0 || rangeType>2)
 return -1
 endif

 //Duplicate the original wave as a wave with the new name
 Duplicate input $outputName
 Wave output = $outputName

 //If rangetype is 0, then normalize to absolute max.
 if (rangetype==0)
 WaveStats/Q output
 endif

 //If rangetype is 1, then normalize to peak over
 //the specified range of POINTS (denoted by brackets)
 if (rangetype==1)
 WaveStats/Q/R=[leftmark,rightmark] output
 endif

 //If rangetype is 2, then normalize to peak
 //over the specified X RANGE (denoted by parentheses).
 if (rangetype==2)
 WaveStats/Q/R=(leftmark,rightmark) output
 endif

 output = output / V_max * peakvalue //Normalize the wave to specified peak
 return 0
End

The new parameter rangetype will be used by the function to determine the conditions with
which wavestats will be executed. The first if-endif statement limits rangetype to a value be-
tween 0 and 2. If the input is negative (<0) or larger than 2, return -1 is executed. The return
statement ends execution of the function. Although it is not necessary to return a value of -1 when
we exit the function, there is no harm done if we return this value. As you might be guessing, when
we integrate this function into a collection of functions, we can use this return value to determine
if the function executed successfully or where it failed. return 0 statement at the end would tell
other functions that CreatNormalizedCopy executed successfully.

If the input of rangetype is correct, we then employ the next three if-endif statements to de-
termine if the absolute maximum will be used to normalize the wave, or if the maximum over a
given x range (noted with parentheses) will be used or the maximum over a given point range
(noted with square brackets) will be used. Be aware that the x range over which Wavestats will
operate is determined by the wave’s X scaling.

13 of 33, September 19, 2007 11:46 PM

To make this function less general but similar in utility to the tag function that we wrote above, we
can write a function that gets the information that CreateNormalizedCopy needs from the cursors
and calls CreateNormalizedCopy.

Function GetNormalizationInfo(newpeakvalue)
 Variable newpeakvalue
 Variable Apoint,Bpoint
 Wave ToNormalize = $csrwave(A)
 Apoint = pcsr(A)
 Bpoint = pcsr(B)
 CreatNormalizedCopy(ToNormalize,newpeakvalue,Apoint,Bpoint,1)
End

Now, display the mass spectrum from the Command window with Display masspec vs
mass2charg. Display the cursors with ShowInfo from the Command window. Now, place the cur-
sors about a peak, and call GetNormalizationInfo with GetNormalizationInfo(4). Make
sure that the graph is the frontmost window before you make the function call. Display
masspec_norm vs mass2charg. Look at the maximum value of the peak you identified with the
cursors.

GetNormalizationInfo algorithm gets the name of the wave from the location of cursors, and
normalizes the trace to the peak maximum bordered by the cursors in the frontmost window. It
passes 1 as the value for rangetype because using the cursors makes this parameter useless. This
parameter is useful to other functions that might receive a wave to normalize and an x range over
which to carry out the normalization from the user.

The pair of GetNormalizationInfo and CreateNormalizedCopy are clearly more practical and
easier to call from the Command window. We created a practical way of calling CreateNormal-
izedCopy without diminishing its potential to be called from other functions.

Next we will deal with the other two important elements of flow control: the for-endfor loop
and the do-while loop.

Extracting Rows or Columns from a Matrix
The data set from this point forth, pe311, comes from a CCD camera. Each row of the matrix con-
tains a full luminescence spectrum (intensity vs wavelength in nm) of europium (the red color in
some televisions). Each row was collected at a different time. It is convenient to load such large
data sets as matrices in order to reduce clutter.

Display pe311 in a table now by executing:

Edit pe311.ld

The first row (indexed 0) was collected at t = 0, the second (indexed 1) at t = 100 microseconds,
the third (indexed 2) at t = 200 microseconds, and so on.

When we imported the data into IGOR, we set the column dimension labels of pe311 to indicate
the wavelength corresponding to the data. As you move down and right in the table, you move to
later times and longer wavelengths.

Naturally, we need to use individual rows or columns of the matrix for display or analysis. Let’s
write a function that extracts all of the rows into separate 1D waves. This process is easily achieved
with the for loop. Pay special attention to the systematic naming scheme introduced here.

14 of 33, September 19, 2007 11:46 PM

Here is a function that extracts the row data into 1D waves.

Function RowsToWaves(theMatrix) //Function declaration
 Wave theMatrix

 Variable rowIndex //the loop variable

 //Store the number of rows and columns into local variables
 Variable numRows = dimsize(theMatrix,0)
 VariablenumCols = dimsize(theMatrix,1)

 //Declare a string variable to store new wave names
 String name

 //Make a wave to hold each row temporarily
 Make/O/N=(numCols) tempRow

 //Use a loop to extract rows one by one
 for (rowIndex = 0; rowIndex < numRows; rowIndex += 1)
 //Make a name that contains the row number.
 name=NameofWave(theMatrix)+"_Row_"+num2str(rowIndex)

 //Extract the indexed row into tempRow
 tempRow=theMatrix[rowIndex][p]

 //Create 1D wave
 duplicate tempRow, $name

 //End of loop body. Commands between "for" and "endfor" are repeated
 endfor

 KillWaves tempRow //cleanup
End

Let's cover the new elements in sequence. First, we use the Dimsize function to store the number
of rows and columns of matrix in the variables numRows and numCols, respectively. Because we
are extracting rows, the number of points in each 1D wave has to be equal to the number of col-
umns in the input matrix. The number 1 tells dimsize(matrix,1) to return the number of col-
umns in matrix.

Note that when you use an IGOR function or a variable to supply a numeric value in a flag pa-
rameter, you must enclose the flag parameter in parentheses; i.e., make/N=50 vs make/
N=(numCols)

We use the for loop to traverse the rows of the matrix by using the loop variable rowIndex as the
row index. We will traverse the rows one-by-one by increasing rowIndex by one after each pass of
the loop body with rowIndex += 1 in the loop declaration.

The loop body starts by creating a new name that contains the matrix name and the row index.
Next, it makes a new 1D wave, via Make/O, wave with the name that was formed in the first line of
the loop body. This process is repeated for every value of rowIndex.

15 of 33, September 19, 2007 11:46 PM

The values that rowIndex can take are determined by the loop parameters. The loop declaration
tells IGOR, in sequence, to start rowIndex at the value 0, to repeat the body of the loop (the se-
quence of commands that follow the declaration but precede the endfor declaration) as long as
rowIndex is less than the number of rows in matrix, and to increase the value of rowIndex by 1
after each iteration of the loop body. When the loop condition is no longer true—when rowIndex
is equal to or larger than the number of rows in matrix—the loop ends. (Also, note that the high-
est row index is one less than the number of rows because IGOR starts indexing at 0.)

Don’t worry about the huge number of waves in the Data Browser. We will write an easy function
to clean them up shortly.

As an exercise, duplicate this entire function in the procedure window (copy and paste), change
the name of the copy to Cols2Waves, and edit it into a function that extracts columns. You should
change the first line of the loop body to read

extractedwavename=NameofWave(theMatrix) + "_Col_"+num2str(ColIndex)

Also, the end condition for the loop needs to be changed to ColIndex<dimsize(theMatrix,1).

Finding a Level in a Wave
To demonstrate the next important element of flow control, the do-while loop, let's write a duo of
functions that determine if a particular intensity level is achieved, and at what point in a wave the
intensity is reached.

Function GetPoint(inwave,threshval)
 Wave inwave
 Variable threshval //receives threshold value from Function call

 //loop variable, the maximum index value of wave
 Variable point=0
 Variable maxindex = numpnts(inwave)-1 //Indexing starts at 0

 //Test the first data point
 if (inwave[0]>=threshval)
 return 0
 Endif

 do //loop declaration
 point+=1 //proceed to next data point
 if (point>maxindex) //if we run out of points
 return -1 //return the value
 Endif
 while(inwave[point]<threshval) //repeat loop body while this is true
 return point//return the point at which the threshold is exceeded
End

Let's test this function on the mass2charg wave that exists in this experiment. Let's see at what
point the mass to charge ratio exceeds the 9000 barrier. Let's call GetPoint from the command
line with

print GetPoint(mass2charg,9000)

16 of 33, September 19, 2007 11:46 PM

The answer is point index number 5283. How about when we pass the 100000 barrier? This an-
swer is -1, which means never. The 1000 barrier? The answer is 0, which means before the first
point in the wave. Let's start with the first if-endif statement to see how the function works.

The function receives a wave reference and a numeric variable as parameters. We test for the first
point in the wave with the first if-endif statement. If we are already higher than the threshold
value, then we return the value 0. If not, we start the loop.

First, we increase the value of pointby 1. Then, we test to make sure that we have not exhausted
the number of points in our wave. If we have, then we return the special value of -1. If we have not
exhausted the wave, then we evaluate the loop condition and repeat the loop if this condition is
true. At the start of the loop body, we move to the next point in the wave by increasing pointby 1,
and we repeat the process.

Once the value of inwave[point] equals or exceeds the threshold value, we exit the loop, and
return the value of point as the value of the function. This value of point is the index of the point
at which the threshold value is equaled or exceeded. Hence, we have written a function that car-
ries out a process and returns a unique value for each possible outcome.

The difference between the for and the do-while loops should be obvious now. for-endfor is
used when a defined endpoint is known before the loop is entered. In the above examples, the
number of points or rows or columns is known before the loop is started. Therefore, we simply
state one of these numbers as the loop condition. In this do-while example, we do not know
when the loop condition will be false. The do-while loop, then, serves as a probe that discovers
whether a particular condition is met at run time. It should be clear that by choosing the right loop
condition, the do-while loop can be made to behave exactly like the for-endfor loop.

It should also be clear from this do-while example that the if-endif statement in the body of the
loop is necessary in order to avoid causing an error in the algorithm. For example, if we supply too
high a threshold, we will never meet the exit condition, and we will eventually increase pointto a
value larger than the number of points in mass2charg.

When writing loops, one must ensure either that the exit condition will be met, or that one pro-
vides an exit route because it is possible that the exit condition will never be meet. Failing to pro-
vide an exit will result in the famous infinite loop trap. Do not forget that such traps can be manu-
ally halted with Command-dot on the Macintosh platform and Ctrl-Break on the Windows plat-
form.

We can complete this example by writing another function to drive GetPoint and to put out a
nicely formatted result:

Function DriveGetPoint(inputwave,thethreshold)
 Wave inputwave
 Variable thethreshold

 Variable outcome=GetPoint(inputwave,thethreshold)
 if (outcome==0)
 Printf "Threshold value %g is reached prior to point 0 in %s.\r",
thethreshold, inputwave
 elseif (outcome==-1)
 Printf "Threshold value %g is never reached in %s.\r", thethreshold,
inputwave
 else

17 of 33, September 19, 2007 11:46 PM

 Printf "Threshold value %g is reached at point %d in %s.\r", thethresh-
old, outcome, NameOfWave(inputwave)
 Endif
End

Now, by calling DriveGetPoint(mass2charg,6000), we get nicely formatted output. The escape
sequences in the print statements, %g and %r, tell IGOR to insert the values of the variables that
appear after the the text into those particular spots. The variables must then be listed in the correct
order.

Automated Cleanup
The last function we will write in this preliminary section is one that will receive a string as input
and then use this string as a criterion to choose waves to kill.

We introduce the very useful IGOR tool of string lists. These are string variables that contain items
separated by semicolons all as one string value. Special IGOR commands can then be invoked to
address the items thus demarcated by semicolons, individually. Let's illustrate this with a simple,
useful function.

Function CleanWaves(matchString)
 String matchString //The criterion for elimination

 //Get list of wave names and create a temporary variables
 String wavenames=WaveList("*", ";", "")

 String name
 Variable i //loop Variable

 //Examine items in list one by one.
 for (i = 0; i < ItemsInList(wavenames); i += 1)
 name = StringFromList(i,wavenames)

 //Compare the name of the wave with the elimination criterion
 if (StringMatch(name,matchString))
 KillWaves $name //Kill the wave
 Endif

 endfor
End

Let's go through the new concepts one line at a time. The first new line is the rather strange string
assignment:

String wavenames=WaveList("*", ";", "")

In this assignment we use the WaveList function which returns a list of wave names and concate-
nates them with the specified separator. IGOR deduces the instructions for constructing the list
from the three arguments of WaveList, which are "*", ";" and "". "*" is a wildcard character,
and it tells IGOR to concatenate all wave names. ";" tells IGOR to use the semicolon as the sepa-
rator between individual wave names as it concatenates them into one long string. "" tells IGOR
that no special options are to be used.

Hence, if our experiment has three waves named wave0, wave1 and newaverage, the WaveList
statement assigns the string value "wave0;wave1;newaverage" to wavenames. Built-in IGOR

18 of 33, September 19, 2007 11:46 PM

functions like StringFromList and ItemsInlist then know how to parse this long string value
into its individual components. If we want to exclude newaverage from the list, we can write
String wavenames=wavelist("wave*",";",""). This WaveList command will construct a list
of wave names that start with the letters "wave".

Once the list is constructed, we then set our loop variable to 0, and begin moving along our list
with the for-endfor loop and use StringMatch to compare each wave name with the elimina-
tion criterion contained in the string variable matchString.

Note that strings can not be compared using the == operator. Here we rely on the Stringmatch
function to do the comparison and to return a numeric value that the if statement understands.
(The CmpStr function is more often used and tests for equality.) In each pass of the loop, we first
extract the the ith in the list of wave names into name, and then we tell StringMatch to evaluate
the string content of name against the elimination criterion. If the elimination criterion is met, we
use the string value of name to kill the wave immediately. We then return to the start of the loop,
increase the value of i by 1 (i+=1) and, thus, move to the next wave name.

It is worth mentioning that the if operator operates on a numeric value. 0 is considered false and
any non-zero value is considered true. In this function, the numeric value on which if is operating
is the value returned by the StringMatch function.

Now, you can use this function to clean up the mess that RowsToWaves made. First, open the
Data Browser (Data-->Data Browser menu sequence) and notice that you have waves named
pe311_Row_0, pe311_Row_1, and so on. Now execute this line:

CleanWaves("*_ROW_*")

Notice that pe311_Row_0, pe311_Row_1 and other such waves have been killed.

Summary
The purpose of the above examples was to introduce you, first, to the basic elements of IGOR pro-
gramming.

You’ve now learned how to enter code in the Procedure window, to declare functions, to pass pa-
rameters, to create local variables, to create loops and conditionals, to reference waves, to write
wave assignment statements, to call (or to execute) functions from the command line, and to call
subroutines (i.e., functions that are called by other functions).

We are now ready to write more complicated algorithms, and the above outline should cement the
approach that we need to take. First, we must break down the process into individual tasks that we
can implement programmatically. Then, we conceive of the logical structure of the steps. Lastly, we
choose the appropriate IGOR commands to realize the algorithm.

Intermediate Algorithms
In this section we will write slightly more complex and hopefully more useful programs. We will
introduce simple Graphical User Interfaces (GUIs), and we will build programs composed of sev-
eral functions. We will also start the habit of outlining the algorithm before committing it to bits.

Since this tutorial was composed primarily in Los Angeles, it is necessary to start with a movie.

19 of 33, September 19, 2007 11:46 PM

A Simple Movie
We next turn to the simple NewMovie IGOR command to demonstrate how easy it is to make a
movie with IGOR. The NewMovie command opens a movie file and appends frames to this movie.
We will extract the individual frames from the same two-dimensional matrix, pe311. We also in-
troduce several more built-in IGOR commands.

For this particular functionality, IGOR relies on Apple's Quicktime. Windows users need to install
Quicktime. You can get it from:

 http://www.quicktime.com/download/win.html

Unfortunately for Windows users, Apple tries very hard to bundle Quicktime with iTunes. Pay at-
tention on the download site, and choose your options carefully. Should you get stuck with the
bundle installer, you can uninstall iTunes afterward (using Add/Remove Programs in the Windows
Control Panel). If you are queasy about installing things on your machine, which we can relate to,
just read this part of the tutorial without doing it.

Let's break down the tasks that our function needs to perform.

1. Receive the name of the matrix as a parameter.

2. Create a temporary 1D wave that will store successive rows of the matrix.

3. Create a graph that will provide serve as each frame of the movie.

4. Scale the x- and y-axes of the graph so that the frames will appear correctly.

5. Start a loop which will replace the trace in the graph with the next row in the matrix and then
append the updated graph to the movie as the next frame.

6. Clean up.

Here is a first crack at this task:

Function MakeMovie(matrix)
 Wave matrix

 Variable i//loop variable

 //make a dummy wave to accept individual rows
 Make/O/N=(dimsize(matrix,1)) framewave

 // Create the graph with name FrameGraph
 Display/N=FrameGraph framewave

 WaveStats/Q matrix //Get statistics of matrix
//Manally set axis to prevent autoscaling
 SetAxis left V_min,1.1*V_max

 //Name the movie after the original wave
 String movieName = NameofWave(matrix) + ".mov"

 //create a new movie with the original wave's name
 NewMovie /F=30/L/I/O as movieName

 //start loop to add frames to movie

20 of 33, September 19, 2007 11:46 PM

 for (i = 0; i < dimsize(matrix,0);i += 1)
 framewave=matrix[i][p]Extract next row

 DoUpdate //update the graph with the next trace in the sequence
 AddMovieFrame //add a frame to the movie

 endfor
 CloseMovie//Close the movie file and save it to disk.

 KillWindow FrameGraph //clean up
 KillWaves framewave //clean up
End

Let’s cover the new concepts in bold.

We create a graph named FrameGraph with the Display command, and set the Y axis range to
span from the minimum value in the matrix to to 110% of the maximum intensity, 1.1*V_Max. We
then initiate the process of making a movie with the NewMovie command, using the original name
of our matrix as the name of this Quicktime movie file. The for loop then starts, in sequence, the
process of extracting each row into framewave, updating the trace in the graph to reflect the new
data in framewave (DoUpdate), and appending the updated graph as the next frame of the movie
(AddMovieFrame).

Now call MakeMovie from the command line with:

MakeMovie("pe311")

Save the movie file to your disk, and view it by double-clicking it.

Close the movie window, and return to IGOR Pro. Comment out (make it into a comment by pre-
ceding it with //) the Setaxis command and execute MakeMovie again to note what happens to
the movie. Using the output of Wavestats with SetAxis, we frame the movie such that the decay
process is visible.

If we desire to have fewer frames, we can advance the frames more quickly by changing i+=1 to
i+=2. When i+=1, it takes on the values 0, 1, 2, 3, 4... When the increment is 2, i takes on the
values 0, 2, 4, 6, 8... Hence, we end up with half as many frames. Alternately, we can set the loop
end condition to dimsize(matrix,0)/2 to animate only the first half of this decay process.

Let's complete this example by refining it such that the x- and y-axes are correctly labeled, and the
x-axis scaling reflects the experimental property that is being displayed; namely, emission wave-
length in nm. Changes are in bold.

Function MakeMovie(matrix,xWave)
 Wave matrix,xWave
 variable i//loop variable

 //make a dummy wave to accept individual rows
 Make/O/N=(dimsize(matrix,1)) framewave

//create the first frame of the movie in a Graph windows called "FrameGraph"
 Display/N=FrameGraph framewave vs xWave
 Label/W=FrameGraph left "Intensity (a.u.)"
 Label/W=FrameGraph bottom "Wavelength (nm)"

21 of 33, September 19, 2007 11:46 PM

 WaveStats/Q matrix //Get statistics of matrix
 //set axis to a constant to prevent autoscaling
 SetAxis left V_min,1.1*V_max

 //Name the movie after the original wave
 String movieName = NameofWave(matrix) + ".mov"

 //create a new movie with the original wave's name
 NewMovie /F=30/L/I/O as movieName

 //start loop to add frames to movie
 for (i = 0; i < dimsize(matrix,0);i += 1)
 framewave=matrix[i][p] //advance to the next trace in the sequence

 DoUpdate //update the graph with the next trace in the sequence
 AddMovieFrame //add a frame to the movie

 endfor
 CloseMovie//Close the movie file and save it to disk.

 Killwindow FrameGraph //clean up
 Killwaves framewave //clean up
End

The x-axis wave is provided in the experiment as Wavelength_pe311. Call the function with:

 MakeMovie(pe311,Wavelength_pe311)

Now, let's explain what we just animated before going on to the next section. As mentioned ear-
lier, each row of this matrix is a full luminescence spectrum of the europium(+3) ion collected at
monotonically increasing time delays from the initial trigger. The movie shows how the intensity of
this luminescence—the intensity of the red color—decays with time. As good scientists, we want to
quantify such decays by fitting them to exponential decay laws in order to gain insight into nature.
Let's do that now.

GUI Driven Analysis
Now we will attempt an algorithm to process a lot of matrices like pe311. These matrices will be
part of different experiments, and in different IGOR files. Therefore, we should write this algorithm
in an independent, standalone procedure file. Open a new procedure file from this menu se-
quence: Windows-->New-->Procedure. Call it LuminescenceLifetime. Then, save it with the File--
>Save Procedure menu sequence or File-->Save Procedure As menu sequence. Remember its name
and location. Now let's quantify the phenomenon we saw in our movie.

The movie example shows that we are dealing with a decay process. The movie shows that there
are three peaks that are decaying: one at approximately 592 nm, another at 616 nm and the third
at 694 nm. We don't want to sum all peaks because the three peaks may have different decay life-
times. Therefore, we want to follow a particular peak in time. We need a way for the user to indi-
cate the peak to be followed. Then we will take the user's input and extract the decay curve for
that peak and fit it to a double-exponential decay function.

This will be a challenging example, but as you will see, the only new element is the GUI. GUIs are
not straightforward, so we will stick with the absolute most basic form straight out of Chapter 6 of
Volume IV. First, let's outline the tasks that each module needs to perform.

22 of 33, September 19, 2007 11:46 PM

User interface

1. Get the names of the matrix containing data and the x-wave, and the left and right boundaries
of a peak from the cursors positions in the frontmost graph.

2. Ask the user for additional information regarding the data.
3. Call data extraction function.
4. Call fitting function.

Data Extraction

1. Receive the choice of matrix and the cross section to be extracted from user interface.
2. Make a 1D wave with a number of points equal to the number of rows in the matrix to receive

the integral of the peak marked by the user at each time point.
3. Extract rows from the matrix one at a time, and evaluates the integral of the peak marked by the

user.
4. Store the integral of each frame into the corresponding point in the integral wave.
5. Calls curve fitting module.

Curve Fitting

1. Receive the wave to be fit.
2. Create a graph containing the wave.
3. Fit the wave with a double exponential decay function.
4. Annotate the graph with the results.

The above order is, of course, the order in which the algorithm will be executed once all compo-
nents have been written. However, this need not be the order in which they are written. In fact, it
is easier to write functioning data extraction and curve-fitting modules before writing the GUI. This
way, one will have a better idea of what information the GUI needs to get from the user. In general,
this approach works better when you start writing IGOR programs. Once you develop greater
competence and comfort with IGOR programming, you will readily know how your functions will
flow, and you can start by programming the GUI without risking having to re-write it later.

Also, it is good practice to write one function and test it before moving to the next function. This
approach helps you to solve problems one at a time and to establish robust building blocks that
you can use to create higher level functions.

With that in mind, let's start with the function that extracts the integral of the peak of our choice.
This one does it.

Function/S ExtractIntegrals(theMatrix,xWave,startpoint,endpoint)
 //Get the name of the matrix and the name of the x axis.
 Wave theMatrix,xWave

 //receive the points on either side of peak
 Variable startpoint,endpoint

 //Strings for name formation
 String outputname,sp,ep
 sp = num2str(startpoint)
 ep = num2str(endpoint)

23 of 33, September 19, 2007 11:46 PM

 //formation of the name of the output wave
 outputname = NameofWave(theMatrix) + "_int_pts_" + sp + "_" + ep

 Variable i //loop Variable

 //create the output wave and reference it with output

 make/N=(dimsize(theMatrix,0))/D/O $outputname
 Wave output = $outputname

 //Scale the extracted wave as the time scaling of the matrix
 Copyscales/P theMatrix, output

 Make/D/O/N=(dimsize(theMatrix,1)) ExtractedRow

 for (i = 0;i < dimsize(theMatrix,0);i += 1)

 ExtractedRow = theMatrix[i][p] //Extract a row

 //Integrate the row vs. wavelength wave and save
 //the integral as a wave called intwave

 integrate/T ExtractedRow/X=xWave/D=intwave

 //Assign area of peak to the corresponding time point in tempslice

 output[i]=intwave[endpoint]-intwave[startpoint]

 endfor

 killwaves intwave,ExtractedRow //clean up

 return outputname
End

Let's see what the function does. From the command line, display the first row vs the wavelength
with

Display pe311[0][] vs Wavelength_pe311

Now, call ExtractIntegrals with

Extractintegrals(pe311,wavelength_pe311,280,372)

Point numbers 280 and 372 define the big peak. The output of ExtractIntegrals shows the in-
tegral over the specified points as a function of time.

Next, display and examine the output wave by executing:

Display pe311_int_pts_280_372

It is an exponential decay as we expected.

We have written a string function that returns the name of the wave it creates. This is helpful be-
cause other functions can use this return value as a handle to reference and to manipulate this
output wave.

24 of 33, September 19, 2007 11:46 PM

ExtractIntegrals resembles the RowsToWaves function which we wrote earlier in order to ex-
tract the rows and store them as individual waves. The additional task is that we integrate each row
over the area specified by the user, and we store the resulting integral in the corresponding point in
the output wave. The only reason we go to this trouble is that integration is a good means of reduc-
ing noise without tampering with the data. To see this noise reduction, display the decay of the
most intense peak at 616 nm (point 312) with

Display pe311[][312]

The integral wave is not as noisy. This should improve the statistics of the curve fitting operation, to
which we turn next.

//Gets the wave, fits it to a double exponential, and graphs the results
Function DoFitting(wave2fit)
 Wave wave2fit

 //Build a name for the graph window
 String GraphName=Nameofwave(wave2fit)+"_Fit"

 String tunits

 //Will receive the two exponential decay constants
 Variable life1,life2

 //Get the time units from the wave for labeling (later)
 tunits = " " + waveunits(wave2fit,0)

 //Display wave2fit in a graph with a known name
 Display/N=$graphname wave2fit

 //Fit wave2fit to a double exponential decay, attach residuals
 Curvefit/N/W=0 dblexp wave2fit /D/R

End

In DoFitting, little new is taking place. The function gets the wave to fit, displays it in a window
which we name with the local string variable GraphName, and carries out the double exponential
curve fit. We call Curvefit with the /W=0 flag because we do not wish to halt execution for user
input.

The CurveFit operation creates a wave named W_coef which contains the coefficients found by
the curve fitting process. The equation for the double exponential is:

y = y0 + A1 * exp((x-x0) / t1) + A2 * exp((x-x0) / t2)

The two values we want are t1 and t2 which are stored in W_coef[2] and W_coef[4] respectively.
The lifetimes that we are after are the inverses of t1 and t2.

It would be nice to label this graph with this information, so lets write a simple function to anno-
tate the graph with the fitting results.

Function LabelGraph(Gname,timeunits)
 String Gname,timeunits
 Variable l1,l2

25 of 33, September 19, 2007 11:46 PM

 //Use this string to compose the graph annotation
 String Summary

 Wave FitResults=W_coef //Reference Curvefit's output wave

 //Note that the lifetime is the inverse of the time constant
 l1 = 1/FitResults[2]
 l2 = 1/FitResults[4]
 summary="Lifetime 1 is "+num2str(l1)+timeunits+"\rLifetime 2 is "+num2s-
tr(l2)+timeunits
 TextBox/A=MC/C/W=$Gname/N=text0 summary
End

LabelGraph receives the name of the graph it needs to annotate along with the other string that it
needs for the annotation, timeunits. Fitresults references W_coef wave (automatically gener-
ated by Curvefit), which contains the results of the fitting. The lifetime results are extracted from
FitResults and assigned to l1 and l2. (Note that Curvefit returns the inverse lifetime values.)
These two numbers are then converted to strings. All these string variables are then combined with
some standard text into the variable summary. The Textbox command then attaches our formatted
summary to the correct window (addressed with /W=$Gphname), and the function ends. (In the
Textbox documentation, introducing a carriage return with the /r escape sequence is explained.)

Add the following line to DoFitting to automatically do the annotation. (This must be the line
immdiately before End.)

LabelGraph(Graphname,tunits)

Go ahead and test this function with the last output of ExtractIntegrals, namely DoFit-
ting(pe311_int_pts_280_372) (or the output wave that corresponds to the points that you
chose).

We now have two of the three components ready. We have two functions that perform the tasks we
desire. They stand on their own, but maybe we must process 50 of such matrices (a common num-
ber for this particular experiment). Perhaps, then, it would be nice to have a simple GUI that drives
these two processes and, thus, relieves us of the task of typing function calls with such long (but
informative) wave names. This is a relatively easy task, and it is the subject of the last concept in-
troduced in this manual: building a graphical user interface in IGOR.

User interfaces are covered in Chapter 6 of Volume III. This topic can be difficult to understand
conceptually. Therefore, we will keep this interface as simple as possible. We will use only the top-
ics covered in the first section, "The Simple Input Dialog".

As usual, let's build this function slowly, in stages. Let's make the GUI as independent and as gen-
eral as possible so that it can lend itself to calling other functions that we write later. So, let's start
with the basic function that drives ExtractIntegrals and DoFitting.

Function DriveAnalysis(Matrix,Wavelength,LeftPoint,RightPoint)
 Wave Matrix,Wavelength
 Variable LeftPoint,RightPoint

 //Reference the output of ExtractIntegrals

26 of 33, September 19, 2007 11:46 PM

 String WaveToFit =
ExtractIntegrals(Matrix,Wavelength,Leftpoint,Rightpoint)
 Wave WaveToPass = $WaveToFit

 DoFitting(WaveToPass)

End

Let's test it with DriveAnalysis(pe311,wavelength_pe311,270,350). It works. Now we know
the four parameters that our GUI needs to obtain and pass on to DriveAnalysis. Since the name
of the wavelength wave can be obtained systematically, all we have to do is get the name of the
matrix. Let's write this basic element of the GUI. Following the recipes in "The Simple Input Dia-
log", we write

Function ProcessMatrix() //User Interface
 //Variables to receive the name of the matrix
 String chosenmatrix

 //Begin formatting the three prompts to be presented to user
 //First prompt presents the list of 2D waves as a popup menu. The chosen
 //value will be assigned to chosenmatrix

 Prompt chosenmatrix,"Name of Matrix: ", popup, wavelist("*",";","DIMS:2")

 Doprompt "Choose the matrix:",chosenmatrix

 //This if statement checks if you pressed cancel, and exits with
 //with a warning message if you have
 if (V_Flag)
 Abort "You chose to cancel."
 Endif

 Print chosenmatrix

End

Go ahead and call the function from the command line.

The Prompt command tells IGOR that the value of chosenmatrix will be obtained from the user
via a simple prompt. The popup addition tells IGOR to present the user with a popup menu con-
sisting of the items in the list that follows popup, a list of waves in this case. We get a list consisting
of exactly one wave because the third parameter in the wavelist operation tells IGOR to limit the
list to waves that have two dimensions. Once the content of the prompt has been defined, the Do-
Prompt presents the prompt to the user according to this definition. The user can be prompted for
additional values simply by listing the variables after DoPrompt. We will do this in a moment.

The if statement aborts execution if cancel is pressed in the prompt. The Print command then
shows that the correct wave name is obtained. So, now lets get the left and right points of the peak
of interest from the user.

Function ProcessMatrix() //User Interface
 //Variables to receive the name of the matrix
 String chosenmatrix

 //The two points defining peak to extract

27 of 33, September 19, 2007 11:46 PM

 Variable Lpoint=0,Rpoint=0,temp

 Prompt chosenmatrix,"Name of Matrix: ", popup, wavelist("*",";","DIMS:2")
 Prompt Lpoint, "Point to the left of the peak: "
 Prompt Rpoint, "Point to the right of the peak: "

 Doprompt "Choose the matrix:",chosenmatrix,Lpoint,Rpoint

 //This if statement checks if you pressed cancel, and exits with
 //with a warning message if you have
 if (V_Flag)
 Abort "You chose to cancel."
 Endif

 //Validate the choice of points
 if (Lpoint == Rpoint) //Abort if they are the same
 Abort "The points are the same."
 elseif (Lpoint > Rpoint) //Order them if they are out of order
 temp = Lpoint
 Lpoint = Rpoint
 Rpoint = temp
 endif

 Print chosenmatrix,Lpoint,Rpoint

End

Go ahead and execute this function again. Choose equal values of Lpoint and Rpoint. Make
Lpoint's value greater than Rpoint's. See what happens in the history area of the Command win-
dow. That last if-elsif statement checks that the values of the points are valid. The variable temp
is needed to reorder the points. We may have neglected to reject point numbers that are larger
than the number of points. We will take care of this soon by getting these values from cursors A
and B. For now, let's complete the GUI by prompting for two additional important parameters: the
time increment between points (which makes decay lifetimes meaningful) and the units for the
time increment. These additions to the function satisfy this requirement.

Function ProcessMatrix() //User Interface
 //Variables to receive the name of the matrix
 String chosenmatrix,timeunits=""

 //The two points defining peak to extract
 Variable Lpoint=0,Rpoint=0,temp,timeincrement=0

 Prompt chosenmatrix,"Name of Matrix: ", popup, wavelist("*",";","DIMS:2")
 Prompt Lpoint, "Point to the left of the peak: "
 Prompt Rpoint, "Point to the right of the peak: "

 Prompt timeincrement, "Time Increment: "

 Prompt timeunits, "Time units: ",popup "nanosec;microsec;millisec;sec"

 doprompt "Choose the matrix and enter the time
increment",chosenmatrix,Lpoint,Rpoint,timeincrement,timeunits

 //This if statement checks if you pressed cancel, and exits with

28 of 33, September 19, 2007 11:46 PM

 //with a warning message if you have
 if (V_Flag)
 Abort "You chose to cancel."
 Endif

 //Make sure that choice of points is valid
 if (Lpoint == Rpoint)
 Abort "The points are the same."
 elseif (Lpoint > Rpoint)
 temp = Lpoint
 Lpoint = Rpoint
 Rpoint = temp
 endif

 Wave theMatrix = $chosenmatrix

 //Let's assume (correctly) that the xwave has been systematically
 //named for us. Build a string value corresponding to the name
 //and reference the wave
 String xWavename="Wavelength_"+NameofWave(thematrix)
 Wave xWave = $xWavename

 //If scaling information was entered, adjust matrix x scaling
 if (timeincrement != 0)
 setscale/p x,0,timeincrement,timeunits,thematrix
 endif

 DriveAnalysis(theMatrix,xWave,Lpoint,Rpoint)

End

Go ahead and test ProcessMatrix. It should work. The Print statement is gone because we
know that we are obtaining the correct values. We have added a few statements to use the entered
wave name to reference the actual wave, to build a systematic name for the wavelength wave and
to reference it and to set the scaling for the matrix if the user has changed the default value of 0.
With everything ready, we call DriveAnalysis with the information that it needs.

To make things easier for the user, let's write a very simple function to drive ProcessMatrix. This
one will get the values from cursors that the user has placed on the frontmost graph.

Function GetMatrixInfo()

 //Get the matrix name from the cursor wave
 String Matrixname = csrwave(A)

 //Variables for points and temporary variable for reordering
 Variable LeftPoint,RightPoint,temp

 //Get the point values
 LeftPoint = pcsr(A)
 RightPoint = pcsr(B)

 //Abort if cursors are not on the graph; reorder if necessary
 If (Leftpoint == Rightpoint || Numtype(LeftPoint) == 2 || Numtype(Right-
point) == 2)
 Abort "Choice of points is not adequate."

29 of 33, September 19, 2007 11:46 PM

 elseif (Leftpoint > RightPoint)
 temp = Leftpoint
 LeftPoint = RightPoint
 Rightpoint = temp
 endif

 ProcessMatrix(Matrixname,LeftPoint,RightPoint)
End

Function ProcessMatrix(chosenmatrix,Lpoint,Rpoint) //User Interface
 //Variables to receive the name of the matrix
 String chosenmatrix

 //The two points defining peak to extract
 Variable Lpoint,Rpoint

 String timeunits=""
 Variable temp,timeincrement=0

 Prompt chosenmatrix,"Name of Matrix: ", popup, wavelist("*",";","DIMS:2")
 Prompt Lpoint, "Point to the left of the peak: "
 Prompt Rpoint, "Point to the right of the peak: "
 ...

Note the changes that need to be made to ProcessMatrix. It is now receiving some values as pa-
rameters. Therefore, the variables that are not acting as parameters need to be separated and de-
clared later. Furthermore, Lpoint and Rpoint are now initialized to the values they receive from
GetMatrixInfo.

Let's give it a test by first displaying the first slice of the matrix with (from the command line)

Display pe311[0][]

Then, let's get the cursors on there with

showinfo

Don't do anything with the cursors just yet. Execute GetMatrixInfo().

It fails because the cursors are empty. If the cursors are not on the graph, the pcsr function returns
NaN (not a number). The if statement uses the logical “or” operator || to abort if either one of the
cursors is empty. The numtype operation returns a value of 2 if the type is NaN. (To see a list of the
logical operators, go to the Command Help section of the IGOR Help Browser and make sure that
the checkbox next to "Programming" is checked. Symbolic operators are listed first.)

Place the cursors on the graph, and execute GetMatrixInfo(). Now you see that the values from
the cursors appear as the initial values for the matrix name, Rpoint and Lpoint. We could have
prevented this by commenting out the lines prompting for these values, but it does make sense to
keep the prompts because the user may want to change them slightly.

Furthermore, prompting for the matrix again is useful because it allows the user to choose points
on a 1-d wave, and extract them from the 2-d wave of his/her choice. Thus, the algorithm offers
some flexibility.

30 of 33, September 19, 2007 11:46 PM

Mark the large peak near 616 nm, run GetMatrixInfo(), and enter 300 microseconds for the
time increments. Do so again after marking a different peak. The lifetime results are different, in
complete agreement with what is known about the fundamental nature of europium luminescence.

You can certainly think of many points of refinement. Perhaps, you would prefer to construct the
extracted integrals from the individual waves that were extracted from the matrix in the
Rows2Waves exercise because that is how you like to load your data. You now know enough about
systematic name formation to change only a few lines to implement this change. Welcome to
IGOR Pro.

Concluding Remarks
The typical IGOR user is a scientist or an engineer with specific data processing needs. Although
IGOR ships with a huge number of built-in capabilities, it cannot fulfill all of one's needs. In fact, a
single application that fits everyone's needs simply does not exist. IGOR's programmability fills
this gap completely.

The goal of this tutorial was to acquaint you with IGOR's programing environment, to make you
comfortable with writing and compiling IGOR functions, to make you accustomed to searching
IGOR's help resources to find the right IGOR operation or function for the task, and to give you
some (hopefully enough) exercise in constructing IGOR commands and functions. The basic ele-
ments of programming (the value of a function, loops, etc.) introduced here are by no means a
complete survey of the methods that can be implemented in IGOR. In fact, a complete survey may
be impossible.

Fortunately, in this quest to write good and valid IGOR Pro code, you will never be on you own. In
addition to IGOR Pro's superb documentation, you can also draw upon the expertise of the global
community of IGOR Pro users and IGOR Pro's developers by joining the IGOR Pro support email
list. You can find details at

http://www.wavemetrics.com/support/mlist.htm

Naturally, an experienced programmer will make the most of IGOR's programmability, but anyone
can make use of this feature. The three steps are 1) to conceive of a series of simple steps to your
outcome, 2) to find the IGOR operations and commands that can perform the individual steps, and
3) to type them into the Procedure window.

Addenda
A Note on Debugging
Computers are inherently stupid machines. The only thing they can do is to follow the instructions
that programmers give them exactly. Therefore, errors encountered by the program were necessar-
ily introduced by the programmer, including the bugs introduced by Wavemetrics developers. The
process of finding one's errors is debugging. When the error consists of a forgotten parenthesis, a
missing comma, or the use of a parameter where a literal string is needed (i.e., using theString
where $theString is required), IGOR will usually guide you to the position where the error oc-
curs. These errors are usually noted by the compiler (i.e., at compile time).

Sometimes, the syntax is perfectly fine, but an error occurs when the function is being executed.
These run time errors frequently happen because you made a mistake in constructing the name of

31 of 33, September 19, 2007 11:46 PM

http://www.wavemetrics.com/support/mlist.htm
http://www.wavemetrics.com/support/mlist.htm

a wave. As a result, IGOR tries to kill a wave that does not exist, and it reports this error. It can not
always tell you where the error appears in the source. To find these errors, you can either use the
debugger or place strategic Print statements in your code.

To use the debugger, activate the Procedure window, and choose "Enable Debugger" from the
"Procedure" menu. You can then use the debugger to monitor the value of every function and pa-
rameter as each line of code is executed.

During debugging you will want to enable the Debug on Error and NVAR, SVAR, Wave Checking
features via the Procedure menu. The Debug on Error feature breaks into the debugger immedi-
ately when an error occurs and shows you the line, or at least the neighborhood of the line where
the error occurred. The NVAR, SVAR, Wave Checking feature breaks into the debugger if your code
tries to access a global numeric variable, global string variable, or wave that does not exist.

The debugger is the subject of Chapter 8 of Volume IV.

A decidedly more old fashioned strategy is to add print statements to the code every time a vari-
able's value is changed. The Print statement can be descriptive. For example, it can read Print
"The value of matrixname at function call is",matrixname. If the value makes no
sense, the you need to examine the lines in which the value of matrixname is formed and as-
signed. Sometimes Print statements find the problem more quickly than using the debugger, but
you will find the debugger more effective once you have learned to use it.

How Wavelength_pe311 was Obtained
The matrix pe311 was exported as an ASCII file and imported into IGOR Pro as a matrix. The
wavelength information was imported as the column label for this matrix. To see this information,
run edit pe311.ld in the Command window. The wavelength information is not linear. It can't
be expressed as wave scaling. Therefore, it must be extracted as a wave against which other waves
are plotted and integrated (e.g., ExtractIntegrals). This function was used to accomplish this
task.

Function ColLabel2Wave(TheMatrix) //make a new wave from matrix column labels
 Wave TheMatrix
 //String variable for name formation
 String wl = "Wavelength_" + NameofWave(TheMatrix)

 //Loop variable used as column index
 Variable i

 //Make a temporary wave to store data
 Make/D/N=(dimsize(TheMatrix,1)) tempwl

 //Traverse columns one by one
 for(i=0;i<=dimsize(TheMatrix,1)-1;i+=1)

 //Convert label to number and assign it to the correct position in tempwl
 tempwl[i]=str2num(getdimlabel(TheMatrix,1,i))

 endfor

 Duplicate/O tempwl, $wl
 Killwaves tempwl
End

32 of 33, September 19, 2007 11:46 PM

Every element of every wave is addressable programmatically in IGOR Pro. The same can be said
of graph windows, graph properties, and so on. The key is finding the right IGOR operation or
function in IGOR Pro's help resources!

33 of 33, September 19, 2007 11:46 PM

